Back to AI Training for Companies

AI Course for Financial Services — Banking, Insurance, and Fintech

Pertama PartnersFebruary 12, 202614 min read
🇲🇾 Malaysia🇸🇬 Singapore🇮🇩 Indonesia hong-kong
AI Course for Financial Services — Banking, Insurance, and Fintech

Why Financial Services Needs Specialised AI Training

Financial services is one of the most document-intensive industries in the world. From credit analysis reports and policy documents to compliance filings and customer communications, banking, insurance, and fintech professionals spend a disproportionate amount of their working hours drafting, reviewing, and revising written material.

Generic AI training does not address the unique demands of financial services. A marketing team's prompt engineering needs are fundamentally different from those of a credit analyst preparing a loan recommendation or a compliance officer drafting a regulatory submission. Financial professionals need AI training that understands the language of risk, regulation, and fiduciary responsibility.

The regulatory environment in Southeast Asia adds another layer of complexity. The Monetary Authority of Singapore (MAS), Bank Negara Malaysia (BNM), Indonesia's Otoritas Jasa Keuangan (OJK), and the Hong Kong Monetary Authority (HKMA) each have distinct expectations around documentation standards, data handling, and algorithmic transparency. An AI course for financial services must equip teams to use AI productively while remaining firmly within these regulatory boundaries.

Regulatory Context — Southeast Asian Financial Services

Financial institutions in the region operate under overlapping regulatory frameworks that directly affect how AI tools can be used for documentation and communications.

RegulatorJurisdictionKey AI-Relevant Guidelines
MASSingaporeTechnology Risk Management Guidelines (TRMG), FEAT Principles for AI in finance, MAS AI governance framework
BNMMalaysiaRisk Management in Technology (RMiT), PDPA, BNM outsourcing guidelines
OJKIndonesiaOJK Regulation on IT Risk Management, data localisation requirements
HKMAHong KongSupervisory Policy Manual on AI, Consumer Protection Charter
AMBDBruneiFinancial Technology Regulatory Sandbox

What This Means for AI Training

Your team must understand that AI tools are permitted for drafting and analysis support, but the regulatory expectation is that a qualified professional reviews, validates, and takes responsibility for every output. No AI-generated document should be submitted to a regulator, sent to a client, or used in a credit decision without human review and sign-off.

Course Modules

Module 1: Credit Analysis Documentation

Credit analysis is the backbone of banking operations. This module teaches professionals to use AI to accelerate credit documentation while maintaining analytical rigour.

What participants learn:

  • Drafting credit memos from structured data inputs (financials, industry context, borrower history)
  • Generating initial risk assessments with appropriate caveats and limitations
  • Creating consistent credit committee presentation summaries
  • Writing loan recommendation narratives that align with internal credit policy templates
  • Producing industry and sector analysis summaries for credit reviews

Hands-on exercise: Participants take a sample set of financial statements and use AI to draft a credit memo, then compare the AI output against the institution's internal template to identify gaps, errors, and areas requiring human judgement.

Module 2: Customer Communications

Financial services customer communications must balance clarity, compliance, and professionalism. This module covers AI-assisted drafting of client-facing documents.

What participants learn:

  • Drafting product recommendation letters with appropriate disclaimers
  • Creating onboarding welcome packs and account setup communications
  • Writing fee schedule explanations in plain language
  • Producing quarterly portfolio review summaries for wealth management clients
  • Generating personalised renewal notices for insurance policies

Key governance rule: Customer communications generated with AI must be reviewed for accuracy of product details, regulatory disclaimers, and suitability of recommendations before sending.

Module 3: Compliance Reporting and Regulatory Submissions

Compliance teams spend enormous time on recurring documentation. AI can accelerate the drafting process while the compliance officer retains full oversight of accuracy and completeness.

What participants learn:

  • Drafting Suspicious Transaction Reports (STR) narratives from investigation notes
  • Creating compliance monitoring reports for board and senior management
  • Producing regulatory submission cover letters and supporting narratives
  • Writing AML/CFT policy documents and procedures
  • Generating gap analysis reports when regulations change

Important boundary: AI must never be used to make compliance decisions. It can draft narratives and summaries, but the compliance officer determines whether a transaction is suspicious, whether a policy is adequate, or whether a regulatory requirement has been met.

Module 4: Insurance — Claims Processing and Underwriting Support

Insurance professionals manage vast volumes of documentation across claims, underwriting, and policy administration. AI accelerates documentation without replacing professional judgement.

What participants learn:

  • Drafting claims assessment summaries from adjuster notes and supporting documents
  • Creating underwriting recommendation narratives from application data
  • Writing policy wording explanations in plain language for policyholders
  • Producing renewal review summaries for commercial insurance clients
  • Generating loss ratio analysis commentary for management reporting

Module 5: Fintech — Product Documentation and Compliance

Fintech companies move fast but still need robust documentation for products, compliance, and investor communications.

What participants learn:

  • Drafting product feature documentation and user guides
  • Creating regulatory sandbox application narratives
  • Writing investor update reports and board presentations
  • Producing API documentation summaries for partner integrations
  • Generating compliance policy documents for licensing applications

Module 6: Cross-Sector Governance and Risk Management

This capstone module covers the governance framework that applies across all financial services sub-sectors.

What participants learn:

  • Establishing AI usage policies aligned with MAS, BNM, OJK, and HKMA expectations
  • Creating model risk management documentation for AI-assisted processes
  • Building audit trails for AI-generated content
  • Implementing review and approval workflows for AI-assisted documents
  • Developing training and awareness programmes for AI governance

Key Use Cases by Sub-Sector

Sub-SectorHigh-Value Use CasesGovernance Priority
Retail BankingCredit memos, customer onboarding docs, product comparisons, complaint responsesCustomer data protection, fair lending documentation
Corporate BankingIndustry analysis, credit committee papers, relationship review summariesConfidentiality of corporate financials
InsuranceClaims narratives, underwriting summaries, policy plain-language explanationsClaims accuracy, policyholder fairness
Asset ManagementPortfolio commentary, fund factsheet narratives, investor reportsSuitability, performance representation accuracy
FintechProduct documentation, compliance filings, investor updatesRegulatory sandbox compliance, data protection
Wealth ManagementClient review summaries, recommendation letters, estate planning documentsSuitability obligations, conflict of interest disclosure

Time Savings — Financial Services Documentation

TaskWithout AIWith AI (Trained Team)Time Saved
Credit memo (mid-market)4-6 hours1.5-2 hours60-65%
Compliance monitoring report3-4 hours1-1.5 hours60-70%
Claims assessment summary2-3 hours45-90 min50-60%
Customer onboarding pack1-2 hours20-30 min70-75%
Quarterly portfolio review letter2-3 hours45-60 min65-70%
Regulatory gap analysis6-8 hours2-3 hours55-65%

Industry-Specific Governance Rules

Financial services AI governance must be more rigorous than general corporate AI policies. The following rules apply to all AI usage in financial services documentation.

RuleWhat To DoWhat NOT To Do
Customer dataUse anonymised or synthetic data in AI promptsNever paste customer account numbers, NRICs, or personal details into AI tools
Credit decisionsUse AI to draft analysis narrativesNever let AI make or recommend credit approval/rejection decisions
Regulatory submissionsUse AI to draft supporting narrativesNever submit AI-generated content to regulators without qualified review
Product recommendationsUse AI to summarise product featuresNever generate personalised investment recommendations via AI without suitability review
Compliance assessmentsUse AI to draft gap analysis narrativesNever rely on AI to determine regulatory compliance status
Audit documentationUse AI to draft audit finding narrativesNever use AI outputs as primary audit evidence

Course Formats

FormatDurationBest ForGroup Size
1-Day Industry Intensive8 hoursFull team upskilling across departments15-30
2-Day Deep Dive16 hoursCredit, compliance, and operations teams needing advanced skills15-25
Half-Day Executive Briefing4 hoursC-suite, board risk committees, heads of department10-20
Modular Programme4 x 2-hour sessionsTeams that cannot take full days away from client coverage15-30

Expected Outcomes

MetricBefore TrainingAfter Training
Time to produce credit memo4-6 hours1.5-2 hours
Compliance report draftingManual from scratchAI-assisted first draft in 30 min
Customer communication consistencyVaries by individualStandardised via prompt templates
AI adoption across departmentsAd hoc, uncontrolledStructured, governed, measurable
Governance complianceNo formal AI policyDocumented policy with audit trail
Employee confidence with AI tools25-35% comfortable80-90% confident and proficient

Explore More

Frequently Asked Questions

Can AI tools be used with customer data in banking? No — not with general-purpose AI tools like ChatGPT or Claude. Customer data (names, account numbers, NRICs, financial details) must never be entered into external AI platforms. The course teaches teams to use anonymised data, synthetic examples, and structured templates that produce useful outputs without exposing sensitive information.

Is this course relevant for Islamic finance and takaful? Yes. The course modules cover documentation patterns that apply to both conventional and Islamic finance. Participants from Islamic banking and takaful companies will work with examples relevant to Shariah-compliant products, including takaful certificates, Islamic financing facility documentation, and Shariah committee reporting.

How does AI training align with MAS and BNM expectations? Both MAS and BNM emphasise that financial institutions must maintain robust governance over technology use, including AI. The course teaches teams to use AI within a governance framework that includes human oversight, documentation of AI usage, and clear accountability — fully aligned with regulatory expectations.

Will this course teach my team to build AI models? No. This is a practical course for business professionals who use AI tools (ChatGPT, Claude, Copilot) for documentation and communication tasks. It does not cover machine learning, model development, or data science. For teams interested in model risk management and algorithmic governance, see our AI Governance Course.

Frequently Asked Questions

Yes, with strict governance. Banks can use AI for internal documentation, report writing, and process improvement. Customer-facing AI use and any use involving personal financial data requires compliance review. The course covers MAS/BNM-compliant AI practices.

More on AI Training for Companies