Back to Insights
AI Governance & AdoptionGuide

AI Governance for Healthcare — Patient Safety, Privacy, and Compliance

February 11, 202611 min readPertama Partners

AI governance framework for healthcare organisations in Malaysia and Singapore. Covers patient data protection, clinical AI safety, regulatory compliance, and practical governance controls.

AI Governance for Healthcare — Patient Safety, Privacy, and Compliance

Why Healthcare Needs the Strictest AI Governance

Healthcare sits at the intersection of three high-stakes factors: sensitive personal data, life-and-death decisions, and heavy regulation. AI errors in healthcare can cause direct harm to patients — a miscalculated dosage, a missed diagnosis, or a leaked medical record can have consequences far beyond what occurs in other industries.

At the same time, AI has enormous potential to improve healthcare: faster diagnosis, more accurate treatment planning, reduced administrative burden, and better patient outcomes. The goal of AI governance in healthcare is not to prevent AI use — it is to ensure that AI improves care safely and responsibly.

Regulatory Landscape

Singapore

Health Sciences Authority (HSA)

  • HSA regulates AI-powered medical devices under the Health Products Act
  • AI software that diagnoses, monitors, or treats medical conditions is classified as a medical device
  • Requires registration and conformity assessment before clinical use

Ministry of Health (MOH)

  • MOH Licensing Terms and Conditions require healthcare institutions to have appropriate governance for technology use
  • National Electronic Health Record (NEHR) guidelines govern data handling in healthcare AI

PDPA (Singapore)

  • Patient data is personal data subject to full PDPA protection
  • Healthcare institutions must obtain consent for AI processing of patient data
  • The "legitimate interests" exception may apply in some clinical contexts but requires careful assessment

IMDA AI Governance Framework

  • Provides principles-based guidance applicable to healthcare AI
  • Emphasises transparency, accountability, and human oversight

Malaysia

Medical Device Authority (MDA)

  • AI-powered medical devices are regulated under the Medical Device Act 2012
  • Requires conformity assessment and establishment registration

Ministry of Health (MOH Malaysia)

  • Governs healthcare facility licensing and standards
  • Any AI use in clinical settings must align with healthcare facility requirements

PDPA (Malaysia)

  • Health data is "sensitive personal data" under PDPA
  • Requires explicit consent for processing, with limited exceptions
  • Higher protection standards apply

Malaysian Medical Council (MMC)

  • Medical practitioners remain responsible for clinical decisions, even when assisted by AI
  • Ethical obligations require informed consent when AI is used in patient care

AI Use Cases in Healthcare

Administrative AI (Lower Risk)

Use CaseRisk LevelKey Controls
Appointment schedulingLowStandard data privacy
Medical billing and codingLow-MediumAccuracy verification, audit trail
Administrative email draftingLowNo patient data in prompts
Training material creationLowClinical accuracy review
Meeting summarisationLow-MediumNo patient identifiers

Clinical Support AI (Higher Risk)

Use CaseRisk LevelKey Controls
Clinical documentation assistanceMediumHuman review, no auto-submission
Literature review and researchMediumSource verification, expert review
Patient communication draftsMedium-HighClinical review, empathy check
Diagnostic image analysisHighClinician oversight, regulatory approval
Treatment recommendation supportHighClinician decision authority, evidence review
Drug interaction checkingHighValidated database, pharmacist oversight

Prohibited AI Uses

The following AI uses should be prohibited without exception:

  • Autonomous clinical decision-making without human oversight
  • Processing identifiable patient data through non-approved AI tools
  • AI-generated diagnoses presented to patients without clinician review
  • Using free/consumer AI tools for any task involving patient information
  • AI-based triage without clinical oversight and validation

Healthcare AI Governance Framework

Principle 1: Patient Safety First

Every AI deployment in healthcare must be evaluated against one primary question: could this harm a patient? If the answer is yes, or even maybe, additional safeguards are mandatory before proceeding.

Requirements:

  • Clinical AI must have mandatory human oversight for all patient-affecting outputs
  • AI outputs must be clearly identified as AI-generated, not presented as clinician opinions
  • Fail-safe mechanisms must exist for AI system outages or errors
  • Regular safety reviews must assess real-world AI performance against clinical standards

Principle 2: Data Protection

Healthcare data is the most sensitive category of personal data. AI governance must ensure:

  • Minimum necessary data: Only the data required for the AI task should be used
  • De-identification by default: Wherever possible, use de-identified or anonymised data
  • Access controls: Strict role-based access to AI tools that process patient data
  • Audit trails: Complete logging of who accessed what data through AI tools
  • Consent management: Clear processes for obtaining and recording patient consent for AI use

Principle 3: Clinical Accountability

  • AI does not replace clinical judgment — it supports it
  • The treating clinician remains accountable for all clinical decisions, including those informed by AI
  • AI recommendations must be documented in the patient record alongside the clinician's decision
  • Clinicians must be trained to critically evaluate AI outputs and override when appropriate

Principle 4: Transparency

  • Patients should be informed when AI is used in their care
  • Healthcare institutions should publish their AI use policies
  • AI-generated content in patient records should be labelled as AI-assisted
  • Clinicians should be able to explain how AI influenced a recommendation

Implementation Checklist for Healthcare Organisations

Governance Structure

  • AI governance committee formed (clinical, IT, legal, privacy, ethics representation)
  • Clinical AI sponsor designated (Chief Medical Officer or equivalent)
  • AI governance integrated into existing clinical governance framework
  • Patient representative included in AI governance discussions

Policies and Standards

  • Healthcare-specific AI policy published
  • Clinical AI use guidelines for practitioners
  • Patient data handling rules for AI tools
  • AI incident reporting integrated with clinical incident reporting

Risk and Safety

  • Clinical AI risk assessment process established
  • Pre-deployment clinical validation requirements defined
  • Ongoing safety monitoring for clinical AI applications
  • Adverse event reporting for AI-related clinical incidents

Data Protection

  • Patient data classification for AI inputs
  • De-identification requirements and procedures
  • Consent processes for AI use in patient care
  • Data handling agreements with AI vendors (healthcare-specific DPA)

Training

  • Clinical staff trained on AI tools and limitations
  • Administrative staff trained on data handling for AI
  • Regular refresher training on AI governance updates
  • New staff onboarding includes AI governance training

Practical Controls for Common Healthcare AI Scenarios

Scenario: Using AI to draft clinical letters

Controls:

  1. Patient identifiers must not be entered into the AI tool
  2. Use clinical summary language, not raw patient data
  3. Clinician must review and approve every AI-drafted letter
  4. AI-generated text must be reviewed for clinical accuracy
  5. Final letter is the clinician's responsibility

Scenario: Using AI for medical literature research

Controls:

  1. Use approved enterprise AI tools only
  2. All AI-cited references must be verified against primary sources
  3. AI outputs are research aids, not clinical evidence
  4. Document AI use in research methodology
  5. Clinical decisions based on research must involve clinician judgment

Scenario: AI-assisted diagnostic imaging analysis

Controls:

  1. AI tool must have HSA (Singapore) or MDA (Malaysia) regulatory approval
  2. AI outputs are advisory — radiologist/clinician makes the final determination
  3. Both AI output and clinician decision are recorded
  4. Regular accuracy audits comparing AI outputs to clinician diagnoses
  5. Patient informed when AI is used in their diagnostic process

Frequently Asked Questions

Healthcare organisations can use enterprise AI tools for administrative tasks that do not involve patient-identifiable data. For any task involving patient information, strict controls are required: enterprise-grade tools with healthcare-specific data protection, de-identification of data, clinical review of outputs, and compliance with PDPA and healthcare regulations.

In most cases, yes. Both Singapore and Malaysia PDPA require consent for processing personal data, and healthcare data has enhanced protection. Patients should be informed when AI is used in their care, particularly for clinical decisions. Some exceptions may apply for de-identified data used in research, but these must be carefully assessed.

The treating clinician is responsible. AI does not replace clinical judgment and cannot be held accountable. Medical practitioners have a duty to critically evaluate AI outputs, exercise independent clinical judgment, and make the final decision. AI-assisted does not mean AI-decided.

Ready to Apply These Insights to Your Organization?

Book a complimentary AI Readiness Audit to identify opportunities specific to your context.

Book an AI Readiness Audit